organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Saeed Dehghanpour,^a Amir H. Mahmoudkhani^{b*} and Vratislav Langer^c

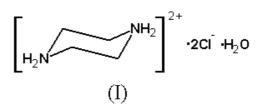
^aDepartment of Chemistry, Tarbiat Modarres University, Tehran, Iran, ^bDepartment of Chemistry, Göteborg University, SE-41296 Göteborg, Sweden, and ^cDepartment of Inorganic Environmental Chemistry, Chalmers University of Technology, SE-41296 Göteborg, Sweden

Correspondence e-mail: amir@inoc.chalmers.se

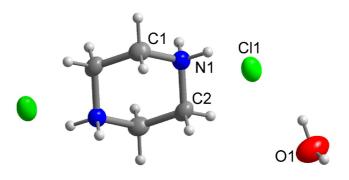
Key indicators

Single-crystal X-ray study T = 297 K Mean σ (C–C) = 0.003 Å R factor = 0.052 wR factor = 0.149 Data-to-parameter ratio = 28.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


Redetermination of piperazine dihydrochloride monohydrate

In the title compound, $C_4H_{12}N_2^{2^+}\cdot 2Cl^-\cdot H_2O$, the piperazinum dication has a center of symmetry, while the water molecule is on the twofold axis. The structure exhibits chains of piperazinum dications linked together by $N-H\cdots Cl$ hydrogen bonds with chloride ions. Between the chains, there are weak hydrogen bonds of the $O-H\cdots Cl$ and $C-H\cdots Cl$ types.


Received 16 May 2001 Accepted 12 June 2001 Online 22 June 2001

Comment

Hydrogen bonding plays an important role in the crystal engineering of organic solids (Desiraju, 1989; Melendez & Hamilton, 1998). There are many examples of one-, two- and three-dimensional motifs formed by hydrogen bonds. The crystal structure of the title compound, (I), has already been reported by Rérat (1960), where a photographic method was used for the intensity measurement and an isotropic refinement of non-H atoms was applied. The refinement of low resultion (0.95 Å) and low quality of data resulted in a poor R value of 0.28 and no H atoms were located. We present here a redetermination of this structure using data from a Siemens SMART CCD diffractometer.

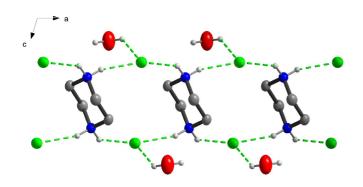
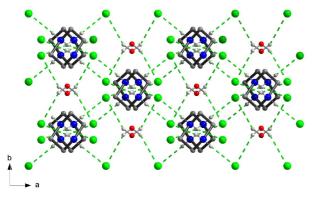

The atomic numbering for (I) is presented in Fig. 1. The structure exhibits hydrogen bonds of the type $N-H\cdots Cl$,

Figure 1


 \odot 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

The molecular structure of (I). Displacement ellipsoids are shown at the 50% probability level.

Figure 2

Representation of a hydrogen-bonded chain in the structure of (I). Each chain is involved in hydrogen bonding with water molecules.

Figure 3

A view along the c axis showing how chains are crossed with respect to each other. Water molecules are in the channels and are weakly bonded to the chains.

forming chains of hydrogen-bonded ions along the [110] and $[\overline{110}]$ directions (Fig. 2). The water molecules are on twofold axes and are located in the channels formed by crossed chains and they are involved in weak hydrogen bonds of the O- $H \cdots Cl$ type with the nearest chains (Fig. 3). Thus, the water molecule shows high mobility which is reflected by high anisotropic displacement parameters of the O atom.

Experimental

The title compound was prepared by the reaction of an ethanolic solution of piperazine and HCl (37% in water) in the molar ratio 1:2.5 at room temperature. Crystals of (I) were obtained by slow evaporation of the solution.

Crystal data

$C_4H_{12}N_2^{2+}\cdot 2Cl^-\cdot H_2O$	$D_x = 1.408 \text{ Mg m}^{-3}$
$M_r = 177.07$	Mo $K\alpha$ radiation
Monoclinic, C2/c	Cell parameters from 1781
a = 10.2233 (3) Å	reflections
b = 6.3323 (3) Å	$\theta = 1-32^{\circ}$
c = 13.5389 (6) Å	$\mu = 0.71 \text{ mm}^{-1}$
$\beta = 107.587 \ (2)^{\circ}$	T = 297 (2) K
V = 835.50 (6) Å ³	Thin plate, colorless
Z = 4	$0.40 \times 0.20 \times 0.04 \text{ mm}$

Data collection

D and concernon	
Siemens SMART CCD diffract- ometer ω scans Absorption correction: multi-scan (Sheldrick, 1996) $T_{min} = 0.764, T_{max} = 0.972$ 3545 measured reflections	1453 independent reflections 974 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 32.9^{\circ}$ $h = -8 \rightarrow 15$ $k = -8 \rightarrow 9$ $I = -20 \rightarrow 20$
5545 measured reneetions	i = 20 + 20
Refinement	H () (1)
Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.052$	independent and constrained
$wR(F^2) = 0.149$	refinement
S = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.0792P)^2]$
1453 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0792P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
51 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 0.48 \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.35 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

N1-C2 N1-C1	1.487 (3) 1.491 (3)	$C1 - C2^{i}$	1.510 (3)
C2-N1-C1 N1-C1-C2 ⁱ	110.92 (16) 111.01 (17)	$N1 - C2 - C1^{i}$	110.23 (17)

Symmetry code: (i) 1 - x, 1 - y, 1 - z.

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$N1 - H1B \cdot \cdot \cdot Cl1$	0.90	2.39	3.1412 (19)	141
$N1 - H1A \cdot \cdot \cdot Cl1^{i}$	0.90	2.29	3.1541 (18)	162
O1-H1···Cl1 ⁱⁱ	0.86(2)	2.82 (4)	3.492 (3)	137 (5)
$C2-H2B\cdots Cl1^{iii}$	0.97	2.80	3.475 (2)	128

Symmetry codes: (i) $x - \frac{1}{2}, \frac{1}{2} + y, z$; (ii) $x - \frac{1}{2}, y - \frac{1}{2}, z$; (iii) $\frac{3}{2} - x, \frac{1}{2} + y, \frac{3}{2} - z$.

The unique H atom of the water molecule was located from a difference Fourier map and was refined with a fixed isotropic displacement parameter and a restrained bond distance of 0.85 Å, whereas the other H atoms were constrained to idealized geometries using the appropriate riding model.

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT and SADABS (Sheldrick, 1996); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2000).

References

- Brandenburg, K. (2000). DIAMOND. Version 2.1d. Crystal Impact GbR, Bonn, Germany.
- Bruker (1997). SHELXTL. Version 5.10. Brucker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R. (1989). In Crystal Engineering; The Design of Organic Solids. Amsterdam: Elsevier.
- Melendez, R. E. & Hamilton, A. D. (1998). Top. Curr. Chem. 198, 97-129. Rérat, P. C. (1960). Acta Cryst. 13, 459-468.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.